Все курсы

GU1Wp-TQ

Практический курс «Computer vision на Python»

Код курса Даты начала курса Стоимость обучения Длительность обучения Формат обучения
VISI
по запросу
90 000 руб. 40 ак.часов Дистанционный
Регистрация

О курсе: Данный курс является введением в тематику решения задач компьютерного зрения. В курсе будут описаны современные подходы по обработке изображений и видео, а также передовые методы детектирования, сегментации и трекинга объектов на них. Основной акцент будет сделан на практическое применение искусственных нейронных сетей и использование фреймворков для работы с ними. Конкретно Вы познакомитесь с возможностями таких библиотек языка Python, как OpenCV для обработки изображений, Tensorflow для создания и обучения нейронных сетей, TensorRT для оптимизации нейросетевых архитектур, а также с фреймворком Flask для создания простых API решений и Tensorflow Serving для внедрения архитектур нейронных сетей в production. По итогам курса участники создадут прототипы модулей для решения 2х промышленных задач по распознаванию текста на изображении и детектирования местоположения человека на видео. Полученные участниками навыки будут вполне достаточны для дальнейшей самостоятельной поддержки и улучшения качества разработанных модулей.

Аудитория: Разработчики, которым необходимо получение экспертизы в области обработки изображений и видео, а также решения задач компьютерного зрения, встречающихся на производстве.

Предварительная подготовка

  • опыт программирования на Python
  • знание основ математического анализа и математической статистики

Программа курса "Computer vision на Python"

  1. Введение в CV и основы нейронных сетей
    Теоретическая часть: основные типы задач CV. Основы нейронных сетей.
    Практическая часть: решение задачи классификации изображений
  2. Алгоритмы предобработки изображений
    Теоретическая часть: библиотеки для предобработки изображений Opencv и PIL
    Практическая часть: возможности библиотек Opencv и PIL, построение алгоритма предобработки изображений в задаче классификации
  3. Свёрточные нейронные сети, архитектура свёрточных нейронных сетей, подходы к обучению нейронных сетей, аугментация данных
    Теоретическая часть: слои свёрточных нейронных сетей, принципы построения. Алгоритм обратного распространения ошибки, типы оптимизаторов
    Практическая часть: построение и обучение свёрточных нейронных сетей from scratch
  4. Предобученные нейронные сети (transfer learning), переобучение нейронных сетей, коллбеки
    Теоретическая часть: основные архитектуры предобученных нейронных сетей, кастомизация предобученных нейронных сетей. Переобучение нейронных сетей, методы борьбы с переобучением.
    Практическая часть: использование предобученной нейронной сети для классификации.
  5. Детектирование объектов на изображении / видео
    Теоретическая часть: архитектуры нейронных сетей для детектирования объектов. Yola, SSD. Метрики качества детектирования объектов
    Практическая часть: решение задачи детектирования объектов, работа с видео потоком.
  6. Сегментация объектов на изображении
    Теоретическая часть: архитектуры нейронных сетей для сегментации объектов. Метрики качества сегментации объектов.
    Практическая часть: решение задачи сегментации объектов, работа с видео потоком.
  7. Трекинг объектов на видео
    Теоретическая часть: алгоритмы трекинга объектов на видео
    Практическая часть: трекинг объектов на видео
  8. Tensorflow ZOO
    Теоретическая часть: подбор нейронной сети из Tensorflow ZOO. Алгоритм обучения выбранной нейронной сети из Tensorflow ZOO.
    Практическая часть: разметка датасета, решение кастомной задачи детекции объектов.
  9. Внедрение нейронной сети в production
    Теоретическая часть: Flask, Docker. Способы внедрения нейронной сети в production.
    Практическая часть: построение сервиса с использованием нейронной сети
  10. Оптимизация нейронной сети для использования в production
    Теоретическая часть: Tensorflow Serving, TensotRT. Способы оптимизации нейронной сети и использования Tensorflow serving поддержки и контроля версий в production.
    Практическая часть: улучшенный сервис с использованием Tensorflow Serving.

Кто проводит курс

prepod-oleg-konorev.jpg
Преподаватель Школы Больших Данных

Конорев Олег

Академия Федеральной службы безопасности Российской Федерации (Москва, 2012)
Профессиональные компетенции:
  • Руководитель группы Data Science в НИИ “Квант”, Москва
  • Computer vision (CV) – решение задач по классификации и детектировании объектов на фото и видео, идентификации человека,  сегментации изображений и распознаванию текста с библиотеками OpenCV, Tensorflow API и архитектурами нейронных сетей  Yolo, SSD, fRCNN, U-net и пр.
  • Natural language processing (NLP– решение задач по классификации текстов, извлечению именованных сущностей (NER) и ключевых слов с библиотеками gensim, nltk, fasttext, spacy и др. Построение различных архитектур на основе искусственных нейронных сетей с использованием различных представлений слов (Embedding, Word2Vec) и готовых нейросетевых решений (Bert, fastai)
  • Time series analysis – решение задач обработки, анализа и классификации аудио сигналов с библиотеками librosa, ffmpeg и различных архитектур нейронных сетей, а также предсказание значений временных рядов (time series forecasting) в приложении к котировкам активов с использованием классических решений (ARMA, ARIMA) и моделей на базе сверточных нейронных сетей (CNN), рекуррентных нейронных сетей (LSTM,GRU) и их комбинаций.
  • Проекты сегментации сигналов с различных датчиков и приборов и распознавания речи (speech-to-text) с облачными сервисами Yandex и Google.
prepod-ermilov-dmitrij-mihajlovich.jpg
Преподаватель Школы Больших Данных

Ермилов Дмитрий

Академия Федеральной службы безопасности Российской Федерации (Москва, 2012)
Профессиональные компетенции:
  • Ведущий Data Scientist в ФГУП “Центр информационных технологий”, Москва
  • Руководитель программ в Университете искусственного интеллекта, Москва.
  • Кандидат наук (2017 год, Московский государственный университет им. М.В. Ломоносова, Москва)
Если у Вас остались вопросы Вы можете позвонить к нам по телефону +7 (495) 414-11-21  или заполнить форму обратной связи на сайте.
Я даю свое согласие на обработку персональных данных и соглашаюсь с политикой конфиденциальности.

Поиск по сайту